High-Fidelity Simulation-Based Athletic Training Education

Kristin Tivener, MET, ATC/L
Tona Hetzler, Ed.D, ATC/L
Today’s Presentation

• History of simulation-based education
• Components of high-fidelity simulation-based teaching and learning activities
• Evidence-based learning outcomes
• The next steps; further incorporating high-fidelity simulation into the AT curriculum

Thank you Jenna Doherty-Restrepo for sharing presentation content and multi-centered collaborative study (HARVEY)
✓ History of simulation-based education

• Components of high-fidelity simulation-based teaching and learning activities
• Evidence-based learning outcomes
• The next steps; further incorporating high-fidelity simulation into the AT curriculum
What is Simulation?

• Immersion of a student in a realistic scenario created within a person, device, or set of conditions which attempts to present education and evaluation problems authentically.

• The reality of the simulation is directly affected by the fidelity of the elements.
 • Low-Fidelity verses High-Fidelity

Realism necessary to suspend disbelief and become fully-immersed in a scenario.
High-Fidelity Simulation Hardware and Software
Advantages to high-fidelity simulation

• Provides students with deliberate practice opportunities

• Opportunity to practice clinical skills in a safe environment without causing harm to the patient.

• Use of critical thinking and active learning to build practice in integrating basic clinical teaching and advanced clinical decision making skills.

• Provides the student with a real clinical problem under the pressure of a realistic simulation.
• History of simulation-based education

✓ Components of high-fidelity simulation-based teaching and learning activities

• Evidence-based learning outcomes

• The next steps; further incorporating high-fidelity simulation into the AT curriculum
Planning for High-Fidelity Simulation

• Educator’s planning (+ my role in CPR simulation)
 • Focus on skills just taught or learning over time model
 • Include skills and critical thinking appropriate for the scenario
 • Develop appropriate scenario objectives
 • Scenarios can be pre-programmed or “on the fly”
Simulation

• Length of time dependent on skill, goals, and fidelity level.

• Students may respond individually or as group
 • Advantage of group = communication, teamwork.
 • 2-5 participants per group is generally best

• Educators’ role = observation

• Students’ role = either participant or observer

Debrief

• The main learning experience!
• Allows the student to reflect on their performance, actions they took, and any actions they would change when presented with a similar scenario.
• Can use video review, scenario output report and observer reports
• Educators’ goal in debriefing = “coach on the side”.
• Develop reflection skills - The ability to learn to have these kinds of constructive and collegial self reviews is a key component to on-going quality improvement in the practice world.
Post-Debrief

- Opportunity to repeat simulation
- Further reflection
• History of simulation-based education
• Components of high-fidelity simulation-based teaching and learning activities
✓ Evidence-based learning outcomes
• The next steps; further incorporating high-fidelity simulation into the AT curriculum
Best evidence practice for effective simulation based teaching/learning suggests that high-fidelity medical simulations facilitate learning under the right conditions, which include:

- Provide **feedback** during the learning experience.
- Learners should repetitively **practice** skills.
- Integrate simulators into the overall **curriculum**.
- Learners should practice increasing levels of **difficulty**.
- Adapt the simulations for multiple **learning** strategies.
- Ensure the simulator provides for clinical **variation**.
- Learning should occur in a **controlled** environment.
- Provide **individualized** (in addition to **team**) learning.
- Clearly define **outcomes** & benchmarks for the learners.
- Ensure the simulator is a **valid** learning tool. (level of fidelity)
Meta-analysis – 609 studies assessing 35,226 students

In comparison with no intervention, simulation training in health professions education is consistently associated with large effects for outcomes of knowledge, skills, and behaviors.

Mayo Clinic College of Medicine, U. British Columbia, U. Toronto
Deliberate Practice

• Deliberate practice focuses on constant skill improvement, not just skill maintenance.

• “Randomness” of clinical experiences – Could be a problem if you rely on traditional clinical education or field experience alone to assure that students gain the needed skills that they have to master.

• Considerations:
 • Some students may never have some experiences
 • Some may not have enough
 • Rarely are we evaluating performance after the experience to assure that students have mastered the skill.
Simulation-based Medical Education with Deliberate Practice Yields Better Results than Traditional Clinical Education

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Competency Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Wayne et al, 2005</td>
<td>38</td>
<td>Advanced cardiac life support</td>
</tr>
<tr>
<td>2. Ahlberg et al, 2007</td>
<td>13</td>
<td>Laproscopic choleystectomy</td>
</tr>
<tr>
<td>3. Andreatta et al, 2006</td>
<td>19</td>
<td>Laproscopic skills</td>
</tr>
<tr>
<td>4. Korndorffer et al, 2005</td>
<td>17</td>
<td>Laproscopic suturing</td>
</tr>
<tr>
<td>5. Korndorffer et al, 2004</td>
<td>20</td>
<td>Laproscopic camera navigation</td>
</tr>
<tr>
<td>6. Van Sickle et al, 2008</td>
<td>22</td>
<td>Intracorpeal suturing</td>
</tr>
</tbody>
</table>

Simulation-based Medical Education with Deliberate Practice Yields Better Results than Traditional Clinical Education

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Competency Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Issenberg et al, 2002</td>
<td>98</td>
<td>Cardiology skills</td>
</tr>
<tr>
<td>8. Barsuk et al, 2009</td>
<td>18</td>
<td>Dialysis catheter insertion</td>
</tr>
<tr>
<td>9. Butter et al, 2010</td>
<td>108</td>
<td>Cardiac auscultation</td>
</tr>
<tr>
<td>Case Control Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Wayne et al, 2008</td>
<td>78</td>
<td>Advanced cardiac life support</td>
</tr>
<tr>
<td>Pre-Post Baseline Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Wayne et al, 2008</td>
<td>40</td>
<td>Thoracentesis skills</td>
</tr>
<tr>
<td>12. Barsuk et al, 2009</td>
<td>41</td>
<td>Central venous catheter insertion</td>
</tr>
<tr>
<td>13. Barsuk et al, 2009</td>
<td>103</td>
<td>Central venous catheter insertion</td>
</tr>
</tbody>
</table>
• History of simulation-based education
• Components of high-fidelity simulation-based teaching and learning activities
• Evidence-based learning outcomes

✓ The next steps; further incorporating high-fidelity simulation into the AT curriculum
• Historically AT education (as well as with other medical training) went from books/classroom to field training/real world

• Long learning curve
 • Students “wait” for something to happen to apply skills at clinical site
 • May never happen
 • May not be able to apply skills
Simulation (versus clinical experience alone) provides opportunity for deliberate practice/reinforcement

- Impacts learning, confidence, and competence
• New paradigm in AT Education should be Classroom – Simulation – Field.

• In this model each student is assured exposure to all clinical experiences, there are opportunities for practice and mastery learning, and opportunities for confidence and competency development and skill validation.
High-Fidelity Simulation Integration

• Many skills are practiced using low-fidelity simulation
 • Considerations:
 • Realism factor?
 • Critical thinking?
 • Ability to integrate skill into larger picture/treatment?
 • Opportunity for feedback/debriefing?
 • Opportunity for practice or re-testing?
4 Steps to close the loop
High-Fidelity Simulation Integration into AT curriculum

1. Identify weaknesses in student knowledge and/or skills
2. Identify low incident events at clinical sites
3. Revise courses/curriculum
4. Increase collaboration among department (and interprofessional/interdepartment)
Break out Application

Auscultation training in athletic training education using varying levels of simulation.
Wrap up - Today’s Presentation

✓ History of simulation-based education
✓ Components of high-fidelity simulation-based teaching and learning activities
✓ Evidence-based learning outcomes
✓ The next steps; further incorporating high-fidelity simulation into the AT curriculum

Thank you for your time. Kristin Tivener, MET, ATC/L, Tona Hetzler, Ed.D., ATC/L